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ABSTRACT

The CMIP5 decadal hindcast (‘‘Hindcast’’) and prediction (‘‘Predict’’) experiment simulations from 11

models were analyzed for the United States with respect to two metrics of extreme precipitation: the 10-yr

return level of daily precipitation, derived from the annual maximum series of daily precipitation, and the

total precipitation exceeding the 99.5th percentile of daily precipitation. Both Hindcast simulations and

observations generally show increases for the 1981–2010 historical period. The multimodel-mean Hindcast

trends are statistically significant for all regions while the observed trends are statistically significant for the

Northeast, Southeast, and Midwest regions. An analysis of CMIP5 simulations driven by historical natural

(‘‘HistoricalNat’’) forcings shows that the Hindcast trends are generally within the 5th–95th-percentile range

of HistoricalNat trends, but those outside that range are heavily skewed toward exceedances of the

95th-percentile threshold. Future projections for 2006–35 indicate increases in all regions with respect to

1981–2010. While there is good qualitative agreement between the observations and Hindcast simulations

regarding the direction of recent trends, the multimodel-mean trends are similar for all regions, while there is

considerable regional variability in observed trends. Furthermore, the HistoricalNat simulations suggest that

observed historical trends are a combination of natural variability and anthropogenic forcing. Thus, the in-

fluence of anthropogenic forcing on the magnitude of near-term future changes could be temporarily masked

by natural variability. However, continued observed increases in extreme precipitation in the first decade

(2006–15) of the ‘‘future’’ period partially confirm the Predict results, suggesting that incorporation of

increases in planning would appear prudent.

1. Introduction

The frequency and intensity of extreme precipitation

has been increasing over the United States over the

past two to three decades (Kunkel et al. 2013a; Walsh

et al. 2014; Easterling et al. 2017). This increase is not

uniform. Large increases have been observed in the

eastern Unites States but lesser increases or no changes

have been experienced in parts of the western United

States (Easterling et al. 2017). Further, a significant

increase in the area affected by precipitation extremes

over North America has also been detected (Dittus

et al. 2015).

These increases have occurred during a period of

rapidly rising concentrations in CO2 and other green-

house gases (GHGs) and associated increases in global

and U.S. temperature (Wuebbles et al. 2017). There is

likely an anthropogenic influence on the upward trend in

heavy precipitation (Dittus et al. 2016), althoughmodels

underestimate the magnitude of the observed trend.

In phase 5 of the Coupled Model Intercomparison

Project (CMIP5; Taylor et al. 2012), a large number of

climate model simulations of the future are available

under a set of future scenarios called the representative

concentration pathways (RCPs; Moss et al. 2010), which

specify radiative forcing levels by the end of the century.

These are typically compared with historical simulations

that are driven by observed magnitudes of the forcings

of the climate system, which includes solar and volca-

nic forcings in addition to GHG and other anthropo-

genic forcings (e.g., aerosols and ozone). Analysis of

these simulations indicate that the observed increase in

heavy precipitation events will continue in the future

(e.g., Janssen et al. 2014, 2016) if GHG concentrations

and associated radiative forcing continue to rise. At-

mospheric rivers, especially along the West Coast of the

United States, are projected to increase in number and

water vapor transport (Dettinger 2011) and experienceCorresponding author: Steve T. Stegall, sstegall@cicsnc.org

APRIL 2019 S TEGALL AND KUNKEL 875

DOI: 10.1175/JAMC-D-18-0057.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/30/22 12:57 PM UTC

mailto:sstegall@cicsnc.org
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


landfall at lower latitudes (Shields and Kiehl 2016) by

the end of the twenty-first century. Extreme precipita-

tion events occur when the air is nearly saturated. Model-

simulatedextremeprecipitation intensity tends to increase to

a first order according to the Clausius–Clapeyron relation,

or about 6%–7% for each degree Celsius of temperature

increase (Trenberth et al. 2003; Kunkel et al. 2013b).

The observed and projected increases in extreme

precipitation strongly suggest that these increases be

taken into account for planning of future infrastructure

that is vulnerable to extreme rainfall. While such in-

frastructure can have lifetimes of 50 years or more,

the decision time horizon of many decision and policy

makers is often much less than that, at most in the 10–

30-yr range. This project explored the information that

could potentially be available from climate models

related to extreme precipitation. In particular, the

CMIP5 archive of simulations includes a set of exper-

iments focused on near-term decadal prediction skill.

Of most relevance are a set of 30-yr simulations. One

simulation period is 1981–2010, which spans most of

the recent period of large increases in extreme pre-

cipitation. This hindcast set can be used to explore

potential skill by comparison with observed trends. A

second simulation period covers 2006–35. This simu-

lation can be used to explore whether there are robust

future signals in extreme precipitation in the near term.

Past studies have foundmixed results to using hindcasts

as guides for potential predictability. For example,

Goddard et al. (2013) evaluated potential for forecasts

out to 2–9 years and found very limited skill for

precipitation.

This paper is organized as follows. Section 2 describes

the observation data and CMIP5 model data used in this

study as well as a description of themethodology used in

the analysis. Section 3 presents a detailed discussion of

the results, and section 4 summarizes the results and

presents conclusions.

2. Data and methodology

a. Observation data

Two types of data were used to establish observed

trends: a gridded product and a station-based product.

Both were derived from the precipitation data of

the Global Historical Climatology Network Daily

(GHCND;Menne et al. 2012). The gridded product may

be most directly comparable to the gridbox data from

climate models in that localized extremes are somewhat

smoothed. However, these localized extremes, which

will be sampled by the point station observations, are of

central interest for many applications. A comparison of

results from these two different data products provides

a sense of the suitability of the climate model projec-

tions for applications in which localized extremes are

important.

The gridded data product was created using the

modified Barnes method of Achtemeier (1989), using all

available stations in GHCND. The gridded data cover

the continental United States at a resolution of 18 lon-
gitude 3 2/38 latitude, or approximately 70 km. Most of

the available stations in GHCND are from the National

Weather Service’s Cooperative Observer Program

(COOP). In mountainous areas, COOP stations are

preferentially located at lower elevations and, as a re-

sult, the absolute values in these areas are likely un-

derestimates. However, most of the results of this study

are on relative changes, not absolute magnitudes, and

thus the dataset is generally suitable for this purpose.

One exception is a comparison of absolute magnitudes

(Figs. 2 and 4) where possible underestimates are ad-

dressed. This gridded dataset was originally developed

by the second author for other projects. It is updated

daily and has been used since the early 1990s for climate

assessment in the Midwestern Climate Information

System (Kunkel et al. 1990) and its successor, the Mid-

western Regional Climate Center cli-MATE system

(http://mrcc.isws.illinois.edu/CLIMATE/). It has also

been used in a project to quality control newly keyed

surface climate data (Kunkel et al. 2005). Since all

available precipitation stations from GHCND are used

to generate its daily gridded estimates, it may not

represent a temporally homogeneous dataset since sta-

tions periodically come into and out of the network.

However, over the 1981–2010 period, there were no

major instrumentation or observing practice changes

in the network that would introduce systematic biases.

Thus, inhomogeneities arising from station changes

are likely to be random.

The second product uses a set of 2494 GHCND sta-

tions that meet two criteria: 1) less than 10% missing

precipitation data over 1981–2010, and 2) less than 65

missing days in every year. The extremes analyses are

done on individual station records and thus incorporate

the localized extremes that are in the point observations.

Aggregation to a regional level only occurs after the

station extremes analyses are complete. Since all of the

stations havemostly complete observations, the data are

approximately temporally homogeneous.

b. CMIP5 models

The CMIP5 includes participants from more than 20

modeling groups using over 50 models. CMIP5 includes a

number of different experiments, including ones to better

understand feedbacks associatedwith the carbon cycle and

clouds, to explore climate predictability and predictive
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capabilities of forecast systems on decadal time scales,

and to determine reasons why similarly forced models

produce a wide range of responses. In this study, the

decadal hindcast and prediction simulations, which

include model integrations for 10–30-yr intervals, are

used. There are three 30-yr simulations: 1961–90, 1981–

2010, and 2006–35. Of most relevance to our study

are the 1981–2010 hindcast (‘‘Hindcast’’) and 2006–35

prediction (‘‘Predict’’) simulations. These periods are

characterized by rapidly rising greenhouse gas con-

centrations and global average temperatures. The

Hindcast (Predict) experiments utilize atmosphere–

ocean global climate models that are initialized by

observed conditions in 1980 (2005) and include ob-

served and projected, time-varying concentrations of

various atmospheric constituents including green-

house gases and volcanic eruptions (Taylor et al. 2012).

The projected forcing uses the RCP4.5 scenario (https://

www.wcrp-climate.org/dcp-activities/dcp-cmip5). CO2

concentrations for the RCP4.5 scenario have been sim-

ilar to observed since 2005. For example, the 2018 CO2

concentration for RCP4.5 is 406.6 ppm (Meinshausen

et al. 2011). The most recent 12-month (October 2017–

September 2018) average from Mauna Loa, Hawaii is

407.8 ppm (https://www.esrl.noaa.gov/gmd/ccgg/trends/

data.html).

In this study, daily precipitation from the 1981–2010

Hindcast and 2006–35 Predict simulations are used.

Table 1 lists the CMIP5 models and the number of en-

semble members for each model. The different ensem-

ble members for a given model were generated by

changing the initial conditions slightly within the limits

of uncertainty about the initial state of the atmosphere,

as is done in modern weather forecasting systems (Toth

and Kalnay 1997; Molteni et al. 1996). The Hindcast

data were analyzed and compared with the observa-

tional data for the same time period. Then the predictive

data were analyzed to assess what the models predict for

extreme precipitation over the succeeding 30-yr period.

To consistently and directly compare extreme pre-

cipitation metrics, the CMIP5 model data and the grid-

ded observational data were linearly interpolated to a

common 1.58 3 1.58 grid.
The natural internal variability of regional extreme

precipitation trends was investigated by analyzing a set

of CMIP5 historical simulations with natural forcing

only (solar and volcanic variations) for the period 1850–

2005 (Taylor et al. 2009, 2012), denoted hereafter as

‘‘HistoricalNat.’’ Data for a subset of four models with

a total of 11 ensemble members were obtained to ex-

plore this source of variability. Table 1 lists these four

models and the number of members. Although the

uninitialized HistoricalNat simulations are not directly

comparable to the initialized Hindcast simulations, the

following results indicate that any effects from the

initialization are small.

c. Extreme precipitation metrics and analysis
methods

The two metrics analyzed in this study were the time

series of the annual maximum daily precipitation (AM),

usually denoted as the annual maximum series (AMS),

and the total precipitation occurring on days that exceed

the 99.5th percentile (P995) of all daily precipitation

values. It is desirable to use metrics representing the

most extreme events since these are the most impactful

on society and the environment. However, this has to be

balanced by the practical consideration of sufficient

sample size for statistical trend testing. The AMS was

subjected to trend analysis and an estimate of the mag-

nitude of the threshold for a 10-yr return level (AM10)

was chosen as the primary metric for extreme pre-

cipitation magnitude. The mean of the AMS (MAMS)

was also analyzed. The AMS is the starting point for

calculations of rainfall frequency values, for example, in

the NOAAAtlas 14 series (e.g., Perica et al. 2013). Any

future changes in this time series would impact the

rainfall design values in NOAAAtlas 14, which are used

in planning and design to incorporate resilience to ex-

treme rainfall. The second metric, P995, is affected by

both the magnitude and frequency of extreme pre-

cipitation; percentile-based metrics are frequently used

to study extreme precipitation (Walsh et al. 2014;

Easterling et al. 2017). The 99th percentile is a common

threshold. We chose the slightly higher threshold of the

99.5th percentile to focus onmore extreme events, while

including a sufficient number for statistically robust re-

sults. The 99.5th-percentile threshold was empirically

TABLE 1. List of the 11 models used from the CMIP5 hindcast

data and the number of ensemble members for each model. The

number of ensemblemembers is also shown for the four models for

which the historical natural simulations were analyzed.

CMIP5 models

Number of ensemble members

Hindcast HistoricalNat

BCC-CSM1.1 4 1

CanCM4 18

CMCC-CM 3

CNRM-CM5 9 6

EC-EARTH 1

FGOALS-g2 3

HadCM3 9

IPSL-CM5A-LR 6 3

MIROC4h 3

MIROC5 6

MRI-CGCM3 3 1
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determined for each model and each grid point from the

1981–2010 Hindcast simulation and that threshold was

applied to the Hindcast, Predict, and HistoricalNat

simulations.

All metrics were first calculated at the gridpoint level

and then aggregated over six regions: Northeast (NE),

Southeast (SE), Midwest (MW), Great Plains (GP),

Northwest (NW), and the Southwest (SW) as defined in

the recent Third National Climate Assessment (Melillo

et al. 2014). Figure 1 highlights these different regions

and presents some basic climatological statistics of the

region that include observed and model means and the

observed and model trends. The Hindcast and Pre-

dict model regional trends are equally weighted by the

model as follows. The ensemble members are first av-

eraged for each model, and then the multimodel mean

(MMM) is calculated to avoid biasing toward those

models that have more ensemble members.

The time series of AMS and P995 consist of 30 values

representing the 30-yr length of the Hindcast and

Predict periods of analysis. Trends in AM10 were de-

termined by fitting a generalized extreme value (GEV)

function to the time series. Trends in P995 were assessed

with the Kendall tau method. Both the GEV and

Kendall’s tau-based method are superior to ordinary

least squares regression for estimation of extreme trends

(Zhang et al. 2004).

The GEV probability distribution function P is given

by (Coles 2001):

P(Z, z)5 exp
n
2
h
11 j

�z2m

s

�i21/jo
, (1)

where m, s, and j are the location, scale, and shape pa-

rameters, respectively. To evaluate trends, both the lo-

cation and shape parameters are modeled with a linear

time covariate centered around zero, that is,

m5m
0
1m

1
(Y2Y

mid
) , (2)

s5s
0
1s

1
(Y2Y

mid
) , (3)

where m0, m1, s0, and s1 are constants, Y is the year, and

Ymid is themidpoint of the period (1995 for the historical

period and 2020 for the future period). The magnitude

of the annual maximum precipitation for a given annual

probability p is given by

AM(p)5m2
s

j
f12 [2log(12 p)]2jg . (4)

The trends for the 1981–2010 historical period were

estimated by calculating AM for p 5 0.10 (10-yr return

level) at Y 5 1981 and Y 5 2010 from (2)–(4) at each

grid point. Then, the gridpoint trend Tg (% decade21)

was estimated as

T
g
5 100%3

�
1

3

��
AM(p5 0:10,Y5 2010)2AM(p5 0:10,Y5 1981)

0:5[AM(p5 0:10,Y5 2010)1AM(p5 0:10,Y5 1981)]

�
. (5)

FIG. 1. Six climate regions for the United States used in this study (these regions are defined

in the Third National Climate Assessment; Melillo et al. 2014). Also included are some basic

climatological statistics including observed and model means and observed and model trends

for each region of the MAMS and the P995 precipitation. The basic statistics are calculated

between 1981 and 2010.
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The future change (2006–35 versus 1981–2010) of AM is

calculated at each grid point by evaluating AM at the

midpoints of the two periods and calculating the dif-

ference as

DAM
g
5 100%3

�
AM(p5 0:10,Y5 2020)2AM(p5 0:10,Y5 1995)

0:5[AM(p5 0:10,Y5 2020)1AM(p5 0:10,Y5 1995)]

�
. (6)

The regional trends and changes for each region

are calculated as an average of the gridpoint values,

that is,

T
r
5

1

G
�
G

1

T
g
, (7)

DAM
r
5

1

G
�
G

1

DAM
g
, (8)

where G is the total number of grid points in each re-

gion and r is the region number. The GEV analysis

was donewith the ‘‘fit_gev.’’ function in the ‘‘climextRemes’’

(version 0.2.0) package from the Comprehensive R

Archive Network (Paciorek et al. 2018; Paciorek 2018).

Trends of the P995 time series are estimated using the

Kendall tau method (Sen 1968; Alexander et al. 2006;

Mondal et al. 2012). This nonparametric test estimates

the slope between each data point to determine if there

is an overall positive or negative trend or an unchanging

trend. The Theil–Sen approach is used to estimate the

magnitude of the trend by taking the median of the

slopes of all the data point combinations.

The statistical significance of the GEV and Theil–

Sen regional trends was assessed against thresholds

obtained from Monte Carlo simulations similar to

the approach used by Kunkel et al. (2007). In these

simulations, a trend sample was generated by randomly

reshuffling the order of years in the Hindcast data and

then applying the above GEV or Theil–Sen method-

ology to derive an estimate of the regional multimodel-

mean trends. The same order of reshuffled years was

used for all model ensemble members in each iteration.

This was repeated 300 times to obtain 300 trend sam-

ples for each region. From this set of 300 trends, the

5th- and 95th-percentile thresholds were computed to

assess significance. Monte Carlo simulations were also

run for the observed gridded and station data using the

same approach.

The HistoricalNat simulations were analyzed by cal-

culating trends in AM10 and P995 for overlapping 30-yr

periods (1851–80, 1856–85, . . . , 1971–2000, 1976–2005), a

total of 26 periods for each simulation. With 11 ensemble

members, there are thus 286 trend values for each region,

from which 5th- and 95th-percentile thresholds were

obtained.

3. Results

Some key characteristics of the Hindcast data are

illustrated in Fig. 2, which shows the AMS averaged

over all model ensemble members for the six regions.

In all regions, the AMS values are initially moderately

high and decrease in the first 3–5 years. Although this

may reflect some modest influence from the experi-

ment’s initial conditions, the multiensemble mean

changes in the first 5 years are small compared to the

spread of the ensemble members and not statistically

significant. Thereafter, there is a gradual increase in

AMS in all regions. Excluding the initial 3 years of

higher values, the upward trends are statistically sig-

nificant in all regions. The upward trends are also sta-

tistically significant over the entire 30-yr period except

for the SW. Also shown is a time series of the Histor-

icalNat simulations averaged over all members, over all

26 periods, and over the 6 regions. By contrast with the

Hindcast, there is no evidence of a trend. There is also

less variability, but that is due to the additional aver-

aging over regions and over time. Similar results were

obtained for P995.

Figure 3 compares the absolute magnitudes ofMAMS

between Hindcast and the observations, expressed as a

percentage difference. The large blue circles are the

model means. Overall, the model mean biases are re-

gionally dependent and there are a few model outliers.

The model means are within ;10% of the observed

values in four of the six regions, the exceptions being the

SE (;225%) and the SW (;120%). The positive bias

in the SW could be due in part to the preferential loca-

tion of observing sites at lower, and usually drier, loca-

tions. Most of the individual model values are clustered

around the model mean. A few of the models have large

positive biases in most or all of the regions, with the

regional details below.

In the NE, the biases of most ensemble members

range from 220% to about 10%, with the model mean

near 0%. The six ensemble members at ;140% are

from the CMCC-CM and MIROC4h models. In the SE,

the biases range from ;250% to near 0%, except for

the CMCC-CM and MIROC4h models, which show

large positive biases from ;115% to 120%. The GP

andMW regions show similar results with models means

near210%, with individual ensemble members ranging
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from;230% to;0% in the MW and to;110% in the

GP. Again, the CMCC-CM and MIROC4h are higher,

with ranges from ;140% to ;150%. In the NW re-

gion, individual biases range from ;225% to ;120%,

with a model mean of ;19%. The CMCC-CM and

MIROC4h again have larger positive biases of ;145%

and ;160%, but in addition the MRI-CGCM3 shows

similar large positive biases. In the SW, the biases of the

individual ensemble members range from ;210% to

;135%, except for larger positive differences near 70%

from the MIROC4h and the MRI-CGCM3 models, and

even larger positive biases from ;1110% to 1120%

from the CMCC-CM model.

Figure 4 compares the 1981–2010 AM10 trends be-

tween Hindcast and the two versions of observational

data. The red and green circles are the observed trends

for gridded and station observations, respectively, black

symbols are individual ensemble member trends, and the

blue circles are the multimodel-mean trends for each

region. All of the regional model-mean trends are small

and positive (;1%–2% decade21). The individual model

ensemble member trends are mostly within a range

from24% to18% decade21. All of the observed trends

are positive with the larger positive values are in the NE,

SE, andMW and smaller values in the GP, SW, and NW,

similar to other recent trend analyses (Easterling et al.

2017). In addition, the observed trends are greater than

the model mean trend in the NE, SE, andMW, similar to

other studies showing that the models generally un-

derestimate themagnitude of the observed trends (Dittus

et al. 2016). In all of the regions, the observed station

trend is within the distribution of individual ensemble

trends, while the observed gridded trends are greater than

any individual ensemble member in the NE and MW.

The trends for the threemodels (CMCC-CM,MIROC4h,

andMRI-CGCM3) with the largest biases in the absolute

values of MAMS (Fig. 3) do not show any tendency for

greater or lesser trends than the rest of the models.

The MMM trends in AM10 were compared with

the results of the Monte Carle (MC) simulation. The

5th–95th-percentile range from the MC suite of

trends is from 20.5% to 20.7% decade–1 to 10.6%

to 10.9% decade21 for the six regions (Table 2). The

MMM trends are greater than the 95th-percentile

threshold in all regions. The observed gridded and

station trends are greater than the 95th-percentile

Monte Carlo simulation threshold for the NE, SE, and

MW regions, but not for the other three regions.

Most of the regional Hindcast ensemble member

trends in AM10 are within the 5th–95th-percentile

range of HistoricalNat trends (Table 3). Also listed are the

number of ensemble members from the Hindcast sim-

ulations that are above (below) the 95th (5th)-percentile

thresholds. The number of Hindcast ensemble members

is computed separately for just the 4 models with

HistoricalNat simulations and also for all 11 Hindcast

models. There are a number of Hindcast trends that

are outside of that range and they are skewed toward

values exceeding the 95th-percentile threshold. For

the 4 models with HistoricalNat simulations, 11 of the

Hindcast ensemble member trends exceed the 95th per-

centile while 3 members are less than the 5th percentile.

FIG. 2. Time series of annual maximum precipitation (deviations

from the 1981–2010 average) from the decadal hindcast simulations

(1981–2010) averaged over all ensemble members for each region

(colored lines). The annual maximum series from the historical

natural simulations (thick black line) is an average over all en-

semble members, all historical periods, and all six regions.
FIG. 3. The difference (%) in the magnitude of MAMS

[(hindcast 2 observation)/observation] of each ensemble member

(small black symbols) and the MMM (large blue circles).
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For all 11 Hindcast models, 44 members exceed the 95th

percentile while only 7 members are below the 5th

percentile.

Similar to the analysis in Figs. 3 and 4, Figs. 5 and 6

compare the absolute magnitudes and trends of P995

between Hindcast and the observations. The biases

(Fig. 5) are very similar to those for AM10 (Fig. 3), with

model-mean biases within 610% for the NE, MW, GP,

and NW, and large negative biases for the SE and large

positive biases for the SW. Again, the large positive

biases in the SW could be due to underestimates in the

observed data. The percentile indices are slightly bias-

corrected because of the calculation relative to each

models’ individual climatology and thus the index is not

affected by mean state biases. The models with large

positive outliers for all six regions are MIROC4h and

CMCC-CM, along with the MRI-CGCM3 in the NW

and SW regions.

The Hindcast trends in P995 (Fig. 6) show somewhat

larger values in most regions than for AM10 (Fig. 4),

including the model mean and ensemble spread.

However, the regional variations are very similar, with

all regions showing small positive trends, except for a

near-zero-trend value for the SW. The observed P995

trends are also generally similar to the observed AM10

trends with upward trends for the NE, SE, MW, and GP

for both observed datasets. The observed trends are

greater than the model-mean trends for these regions,

while they are similar or smaller for the NW and SW.

Again, the trends for three models (CMCC-CM,

MIROC4h, andMRI-CGCM3)with the largest biases in

the absolute values of P995 (Fig. 5) do not show

any tendency for greater or lesser trends than the rest of

the models.

The MMM trends in P995 were compared with the

results of the MC simulation. The 5th–95th-percentile

range from the MC suite of trends is 21.8% to

22.3% decade21 to 11.8% to 12.3% decade21 for the

six regions (Table 4). The MMM trends are greater

than the 95th-percentil threshold in the NE, SE, MW,

and GP. The observed gridded trends are greater than

the 95th-percentile MC threshold for the same regions.

However, the observed station trends are greater than

the 95th-percentile MC thresholds only in the NE.

Comparison of the P995 trends (Fig. 6) with the

HistoricalNat 5th–95th-percentile range (Table 3) shows

similar results to those for AM10. Most Hindcast trends

are within that range. Those that are outside that range

are skewed in number toward exceedances of the 95th-

percentile threshold. For the 4models withHistoricalNat

simulations, 24 of the Hindcast ensemble member

trends exceed the 95th percentile while 15 members

are less than the 5th percentile. For all 11 Hindcast

models, 81 members exceed the 95th percentile while

35 members are below the 5th percentile.

TABLE 2. Comparison of the 1981–2010 AM10 trends with the 5th- (in parentheses) and 95th-percentile threshold trends (% decade21)

from theMC simulations. Trends that exceed the 95th percentile and therefore are considered statistically significant upward trends are in

boldface. Trends are listed for the Hindcast MMM, the gridded observations, and the station observations.

Region

Hindcast

MMM

MC Hindcast

percentiles

Gridded

observation trends

MC gridded observation

percentiles

Station

trends

MC station observation

percentiles

Northeast 11.3 10.7 (20.7) 112.9 18.6 (28.5) 17.7 15.3 (25.6)

Southeast 11.6 10.7 (20.6) 18.0 14.1 (24.6) 13.2 12.5 (22.6)

Midwest 10.7 10.6 (20.5) 14.6 14.4 (24.0) 13.1 12.4 (22.6)

Great Plains 11.2 10.7 (20.6) 11.8 12.9 (22.4) 10.2 12.4 (22.0)

Northwest 11.3 10.9 (20.7) 11.6 14.3 (24.6) 20.9 14.3 (23.9)

Southwest 10.8 10.7 (20.5) 14.6 15.2 (24.2) 10.5 13.3 (23.4)

FIG. 4. The 1981–2010 trend (% decade21) in AM10 for indi-

vidual Hindcast ensemble members (black symbols), the multi-

model Hindcast mean (blue circles), and the observed trends for

gridded (red circles) and station (green circle) observations, for

each region.
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Figure 7 is the percentage difference in AM10 be-

tween the means of the Predict and Hindcast simula-

tions. In all regions the difference is positive, indicating

that the simulations are producing higher values of

AM10 during 2006–35 than during 1981–2010. The

model means of each region range from ;12% to

;14% difference. The range of the ensemble members

are relatively consistent between ;22% and ;19%,

with a few values outside that range in all regions. The

exception is the SW region, where the spread is a bit

larger with the difference ranging from ;25% to

;110%, with four values outside that range. In all re-

gions, the future changes are greater than 0% for the great

majority of individual ensemble members. Nevertheless,

a few model ensemble members show future decreases,

indicating that internal model variability is large enough to

potentially cause future decreases for the 2006–35 period.

The future changes for the three models (CMCC-CM,

MIROC4h, and MRI-CGCM3) with the largest biases in

the absolute values of MAMS (Fig. 3) do not show any

tendency for greater or lesser changes than the rest of

the models.

The future changes in P995 (Fig. 8) are similar to those

for AM10, with the exception that the absolute magni-

tudes of change are somewhat larger. Overall the

ensemble member changes range from ;215% to

;138%. All the model means show a positive differ-

encemainly ranging from;18% to112%, with the SW

region at ;16%. The future changes for the three

models (CMCC-CM, MIROC4h, and MRI-CGCM3)

with the largest biases in the absolute values of P995

(Fig. 5) do not show any tendency for greater or lesser

changes than the rest of the models.

4. Discussion and conclusions

Changes in extreme precipitation, whether historical

or in the future, are driven by multiple conditions, in-

cluding thermodynamic, dynamical, and microphysical

factors (O’Gorman 2015). The thermodynamic factor,

the Clausius–Clapeyron relationship between tempera-

ture and saturation water vapor pressure, is well un-

derstood and directly relevant in the context of

anthropogenically forced global warming. As the globe

warms, and particularly the ocean surface waters, near-

surface atmospheric water vapor content over oceans

will rise. The influences of global warming on dynami-

cal and microphysical factors are less understood

(O’Gorman 2015). Regional variability arising from

FIG. 5. The difference (%) in themagnitude of P995 [(hindcast2
observation)/observation] of each ensemble member (small black

symbols) and the MMM (large blue circles).

TABLE 3. Regional 5th- and 95th-percentile values from the probability distribution functions of trends (% decade21) calculated from

the historical natural simulations. The values in parentheses are the number of ensemble member trends from the 1981–2010 decadal

simulations that are above the 95th-percentile trend or below the 5th-percentile trend only for the four models used in the historical

natural analysis. The boldface values in parentheses in the bottom two rows are the sums of the regional values for those four models. The

values in the bottom row are the number of ensemble-member 1981–2010 trends that are above the average 95th-percentile or below the

5th-percentile average trends, but including all 11 models.

Region

AM10 P995

5th percentile 95th percentile 5th percentile 95th percentile

Northeast 24.4 (0) 14.4 (4) 28.7 (1) 110.2 (2)

Southeast 23.9 (0) 13.7 (1) 26.6 (3) 18.7 (4)

Midwest 23.9 (2) 14.2 (1) 27.1 (1) 17.2 (4)

Great Plains 23.3 (0) 13.3 (1) 24.3 (3) 16.3 (4)

Northwest 25.0 (1) 15.9 (2) 27.0 (3) 18.6 (5)

Southwest 24.9 (1) 14.6 (2) 25.8 (4) 17.0 (4)

Average (Total) 24.4 (3) 14.4 (11) 26.6 (15) 18.0 (24)

All models (7) (44) (35) (81)
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natural factors adds another dimension of complexity to

the interpretation of the observed and model results.

The availability of a large number of ensemble members

provides some insights into the influences of natural

variability.

Two metrics of extreme precipitation from CMIP5

hindcast and predictive data were analyzed for each

ensemble member: the magnitude of the 10-yr return-

level daily precipitation, derived from the annual

maximum series, and the total precipitation exceeding

the 99.5th percentile of daily precipitation. The results

were aggregated into six U.S. regions. For AM10, both

observed data and Hindcast simulations show upward

trends in all regions, except for a small downward trend

in the observed station data for the NW (Table 2). The

observed trends are greater than the multimodel-mean

trends in NE, SE, and MW. In the other regions, the

observed and Hindcast trends are similar in magni-

tude. The Monte Carlo simulations suggest that the

multimodel-mean trends are statistically significant in

all regions (Table 2). The observed trends are statisti-

cally significant in the NE, SE, and MW. The P995

trends are statistically significant for the NE, SE, MW,

and GP regions for both Hindcast and gridded ob-

served trends, but not in the NWand SW (Table 4). The

station P995 trend is only statistically significant in

the NE.

The observed increases are likely driven in part by

increases in atmospheric water vapor. Seneviratne et al.

(2012) concluded that observed increases in many re-

gions of the globe are consistent with thermodynamic

constraints based on the Clausius–Clapeyron relation-

ship. Observations indicate global increases in water

vapor (Wuebbles et al. 2017). Because of the Clausius–

Clapeyron relationship, global temperature and atmo-

spheric water vapor are closely coupled in climate

models. Very-high-resolution (4 km) regional modeling

using a pseudo–global warming approach (Prein et al.

2017) shows that increases in global temperature and

associated water vapor content leads to increases in very

extreme precipitation rates virtually everywhere in the

conterminous United States, even where mean precipi-

tation and moderate extreme precipitation decreases.

The observed increase may also be affected by changes

in weather systems. Kunkel et al. (2012) investigated the

weather systems associated with the observed increases

and found that increases in events caused by fronts

dominated the overall increases. Feng et al. (2016)

found that mesoscale convective systems (MCSs) were

primarily responsible for spring increases in extreme

precipitation. The weather system component of model-

simulated increases has not been investigated.

These trends may also be consistent with natural vari-

ability internal to the climate system. The HistoricalNat

TABLE 4. Comparison of the 1981–2010 P995 trends with the 5th- (in parentheses) and 95th-percentile threshold trends (% decade21)

from theMC simulations. Trends that exceed the 95th percentile and therefore are considered statistically significant upward trends are in

boldface. Trends are listed for the Hindcast MMM, the gridded observations, and the station observations.

Region

Hindcast

MMM

MC Hindcast

percentiles

Gridded

observation trend

MC gridded observation

percentiles

Station

trends

MC station observation

percentiles

Northeast 14.5 12.2 (22.0) 118.6 113.7 (213.7) 119.3 115.3 (216.2)

Southeast 13.1 12.1 (22.2) 18.5 18.5 (27.6) 18.6 19.0 (29.5)

Midwest 13.1 12.0 (22.3) 18.3 16.9 (26.5) 15.4 18.8 (29.2)

Great Plains 13.0 11.8 (21.9) 19.4 16.9 (27.8) 14.1 17.9 (28.2)

Northwest 11.9 12.3 (22.4) 12.5 19.3 (28.9) 21.9 113.9 (217.0)

Southwest 10.3 11.8 (21.8) 25.0 18.7 (28.2) 10.2 111.5 (211.7)

FIG. 6. The 1981–2010 trend (% decade21) in P995 for individu-

al Hindcast ensemble members (black symbols), the multimodel

Hindcast mean (blue circles), and the observed trends for gridded

(red circles) and station (green circle) observations, for each region.
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simulations provide insights into this possibility. Table 3

summarizes the analysis of these simulations, providing

the 5th- and 95th-percentile thresholds of the distribution

of 30-yrHistoricalNat trends and the number of Hindcast

ensemble members outside of those ranges. Although

most Hindcast trends are within those ranges, the trends

outside of those ranges are heavily skewed toward ex-

ceedances of the 95th percentile. This skew toward up-

ward trends suggests that both internal variability and

anthropogenic forcing are influencing the trends found in

the Hindcast simulations.

Future projections indicate increases in all regions

for this near-term future window, indicating that the in-

creases in anthropogenic forcing are sufficient to produce

a systematic response in the climate system at the re-

gional scale. This suggests that there is merit in incorpo-

rating future extreme precipitation increases in planning,

even for situations in which only this relatively short fu-

ture time horizon needs to be considered. Goddard et al.

(2013) found limited skill for precipitation forecasts for a

2–9-yr time horizon; any predictive skill for such a time

horizon is likely to arise from the initial and boundary

conditions. The 30-yr time horizon evaluated here in-

cludes overall larger levels of anthropogenic forcing

changes over the hindcast evaluation period and even

larger forcing changes between the hindcast and pre-

dictive periods; this combined with the longer period to

average out internal variability appears to be sufficient to

produce a detectable signal. The projected increases in

AM10 are particularly relevant because they imply that

current rainfall design values will not provide the ex-

pected protection.

This conclusion should be considered in the context of

the outcomes of this study related to natural variability.

There is generally good qualitative agreement between

the observations and model simulations with regard to

the direction of recent trends; both indicate generally

upward trends in the historical 1981–2010 period. But

the model trends are similar for all regions while there is

large regional variability in the observed trends, with

large upward trends in the eastern regions and smaller

trends in the western regions. While this may indicate

either that the models are not sensitive enough to an-

thropogenic forcing of extreme precipitation in the

easternUnited States, it may be that the observed trends

are also being forced by other (natural) factors that

could reverse in the future. In fact, Hoerling et al. (2016)

suggest that forcing by sea surface temperature (SST)

variability was a more important factor over this period.

The analysis of the HistoricalNat simulations indicates

that internal variability can be of similar magnitude to

the observed and modeled increases. Thus, in this near-

term (10–30 years) future window, natural variabil-

ity could temporarily negate the increases that are

forced by greenhouse gas forcing. However, we are now

already a decade into the ‘‘future’’ predictive period.

Extreme precipitation has continued to increase

(Easterling et al. 2017), partially confirming the

FIG. 7. The difference (%) in the magnitude of AM10 between

the 2006–35 prediction and the 1981–2010 hindcast [(prediction 2
hindcast)/hindcast] for each ensemble member (black symbols)

and the MMM (large blue circles).

FIG. 8. The difference (%) in the magnitude of P995 between

the 2006–35 prediction and the 1981–2010 hindcast [(prediction 2
hindcast)/hindcast] for each ensemble member (black symbols)

and the MMM (large blue circles).
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predictive results. Incorporation of future extreme pre-

cipitation increases into relevant aspects of planning

would appear to be a prudential approach, particularly

since virtually all studies and our fundamental physical

understanding indicate that extreme precipitation will

increase eventually at the regional scale if greenhouse

gas concentrations continue to increase.

There is no indication in this analysis that the initial

conditions for the Hindcast have a detectable influence

except perhaps for the first 3 years or so (Fig. 2). It

raises the question whether there is any added value in

30-yr initialized simulations for precipitation extremes

in the United States versus simply using uninitialized

simulations with all historical forcings and scenario-

based future simulations. Some of the studies cited

earlier have found a forced future signal in metrics of

extreme precipitation qualitatively similar to those in

this study (e.g., Janssen et al. 2014, 2016). For our target

period of use (10–30 years into the future), our results

suggest that the uninitialized simulations are equally

applicable.
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